
Remy Belmonte remy.belmonte@dauphine.eu 

Lab 6

Algorithmic and advanced

Programming in Python

1



Algorithmic and advanced Programming in Python

Problem 1: Check Binary Search Tree

• Give an algorithm to check a tree is a BST

2



Algorithmic and advanced Programming in Python

Problem 2: Create a Balanced BST

• Write a Python program to create a Balanced Binary Search Tree 
(BST) using an array (given) elements where array elements are sorted 
in ascending order.

3



Algorithmic and advanced Programming in Python

Problem 3: Binary Search Tree Search

• Write a Python program to find the closest value of a given target 
value in a given non-empty Binary Search Tree (BST) of unique 
values.

4



Algorithmic and advanced Programming in Python

Problem 4: Delete a node in BST

• Write a Python program to delete a node with the given key in a given 
Binary search tree (BST).

• Note: Search for a node to remove. If the node is found, delete the 
node.

5



Algorithmic and advanced Programming in Python

Problem 5: Conversion

• Write a Python program to convert a given array elements to a height 
balanced Binary Search Tree (BST).

• Note: The selection sort improves on the bubble sort by making only 
one exchange for every pass through the list.

6



Algorithmic and advanced Programming in Python

Problem 6: kth smallest element in BST

• Write a Python program to find the kth smallest element in a given a 
binary search tree.

7



Algorithmic and advanced Programming in Python

Problem 7: use BST to sort

• Write a Python program to sort a list of elements using Tree sort.

8



Algorithmic and advanced Programming in Python

Problem 8: AVL Tree

• 1) Description:(Insertion In AVL) 

• Perform standard BST insert for w. 

• 2) Starting from w, travel up and find the first unbalanced node. 

• Let z be the first unbalanced node, y be the child of z that comes on the path 
from w to z and x be the grandchild of z that comes on the path from w to z. 3) 
Re-balance the tree by performing appropriate rotations on the subtree rooted 
with z. There can be 4 possible cases that needs to be handled as x, y and z can 
be arranged in 4 ways. Following are the possible 4 arrangements: 

a) y is left child of z and x is left child of y (Left Left Case - LL) 

b) y is left child of z and x is right child of y (Left Right Case - LR) 

c) y is right child of z and x is right child of y (Right Right Case - RR) 

d) y is right child of z and x is left child of y (Right Left Case - RL)

9


